
Deliverable

Project Acronym: IMAC

Grant Agreement number: 761974

Project Title: Immersive Accessibility

D3.3 Content Packaging and Distribution

Revision: 1.8

Authors: Marc Brelot, Romain Bouqueau, Rodolphe Fouquet (Motion Spell)

Delivery date: 01 - 08- 2019 (M22)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement 761974

Dissemination Level

P Public X

C Confidential, only for members of the consortium and the Commission Services

Abstract:

This report focuses on software modules implemented in task 3.3 “Content packaging and
distribution”. First, it presents an overview of the current ImAc platform architecture and
details the workflow and each of its components. It also details the future evolutions of the
platform regarding final iteration needs of the project, specially linked to pilot 2. Then, this
report explains how those modules can be installed and managed (user manual section) and
how to access the code.

Ref. Ares(2019)5062764 - 02/08/2019

1 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

REVISION HISTORY

Revision Date Author Organisation Description

0.1 28-06-2018 Marc Brelot MSE Template and ToC

0.2 01-07-2018 Romain
Bouqueau

MSE Adding initial content

0.3 06-08-2018 Marc Brelot MSE Modifying / Adding content

0.4/0.5 08-08-2018 Romain
Bouqueau

Rodolphe

Fouquet

MSE Modifying / Adding content

0.6 10-08-2018 Marc Brelot MSE Finalize a first temporary version

0.7 07-09-2018 Rodolphe
Fouquet

MSE Modifying / Adding content

1.0 08-09-2018 Marc Brelot MSE first complete draft for review

1.1 13-09-2018 Marc Brelot MSE Template adaptation

Submitted version

1.2/1.3 08-10-2018 Marc Brelot MSE Reviewed version addressing the
comments by Francesc Mas (CCMA)

1.4/1.5 11-11-2018 Marc Brelot MSE Reviewed version addressing the
comments by Mario Montagud (I2CAT)

1.6 06-07-2019 Marc Brelot

Rodolphe
Fouquet

MSE Adding chapter on future possible
evolutions

1.7 29-07-2019 Marc Brelot

Rodolphe
Fouquet

MSE Reviewed version addressing the
comments by Mario Montagud (I2CAT)

1.8 01-08-2019 Marc Brelot

Rodolphe
Fouquet

MSE Final reviewed version addressing the
comments by Mario Montagud (I2CAT)

2 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Disclaimer

The information, documentation and figures available in this deliverable, is written by the IMAC
– project consortium under EC grant agreement H2020-ICT-2016-2 761974 and does not
necessarily reflect the views of the European Commission. The European Commission is not
liable for any use that may be made of the information contained herein.

Statement of originality:

This document contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

EXECUTIVE SUMMARY

The ImAc project Task T3.3 “Content packaging and distribution” defines how the media
contents generated by the Production tools, described in D4.1[3], D4.2[4] and D4.3[5], are
prepared and managed through the Accessible Content Manager (ACM), described in D3.2, and
then packaged and delivered to the player, described in D3.5 [2].

This deliverable focuses on the software developed in that task, by describing the global
architecture, the different modules and the workflow. This document aims at exposing first what
has been currently developed for the first phase of the project (mostly linked with the pilot 1)
and then presents the planed evolutions of architecture and modules that would fulfil the final
needs of pilot 2. In parallel, the specification and implementation of the different modules strive
to rely as much as possible on standards, and to provide generic APIs allowing to setup a full
production chain open to scalability and extension.

3 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

CONTRIBUTORS

First Name Last Name Company e-Mail

Romain Bouqueau Motion Spell romain.bouqueau@gpac-licensing.com

Marc Brelot Motion Spell marc.brelot@gpac-licensing.com

Rodolphe Fouquet Motion Spell rodolphe.fouquet@gpac-licensing.com

Francesc Mas CCMA fmas.z@ccma.cat

Mario Montagud i2CAT mario.montagud@i2cat.net

4 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

CONTENTS

Revision History 1

Executive Summary 2

Contributors 3

Tables of Figures and tables 6

List of acronyms 7

1. Introduction 8

1.1 Purpose of this document 8

1.2 Scope of this document 8

1.3 Status of this document 8

1.4 Relation with other ImAc activities 8

2. Platform description 10

 General architecture 10

 Server-side platform implementation 10

 General workflow 11

3. Architecture and components description (phase 1) 12

 Server-side platform implementation 12

 Server-side platform workflow 12

 Content preparation sequence 13

 Components description 14

3.4.1. Ingest 14

3.4.1.1. Ingest steps and metadata description file 14

3.4.1.2. Transcoding module and CRON script 14

3.4.2. Low Quality transcoding 16

3.4.2.1. ImAc encoder 16

3.4.2.2. Notification to the ACM 16

3.4.3. Packaging and distribution module 16

3.4.3.1. From ACM to the packaging 16

3.4.3.2. Imac-packager 17

 Server setup 18

4. Architecture and components description (phase 2) 19

 Server-side platform implementation (phase 2) 19

4.1.1. Better upload management 20

4.1.2. Better scalability 20

5 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

4.1.3. Encoding Improvements 20

4.1.4. Discontinuous Signer Language video and position 21

5. How To 22

 How to access the SFTP server 22

 How to access the Code 22

 How to install the content packaging and distribution module 22

5.3.1. How to install the Cron script 22

5.3.2. How to install the packager 23

6. User manual 24

Annex 1: Production XML metadata (and XSD for validation) 25

Annex 2: ACM notification to the packager 28

Annex 3: MPD TTML customization 30

Annex 4: MPD audio custom descriptors 31

Annex 5: JSON Database used by the player 31

References 33

6 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

TABLES OF FIGURES AND TABLES

Figure 1: Relationships between Work Packages (WPs), and their cycles (iterations). 9

Figure 2: PERT Diagram illustrating the relationship between T3.3 and other ImAc activities. 9

Figure 3: Deployment View Diagram - complete ImAc system ... 10

Figure 4: General platform architecture implementation .. 11

Figure 4: Platform architecture implementation for phase 1 ... 12

Figure 6: Content workflow through the platform ... 13

Figure 7: Sequence diagram of the content processing.. 13

Figure 8: Contents accessibility form ... 17

Figure 9: Platform implementation architecture for phase 2 ... 20

7 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

LIST OF ACRONYMS

Acronym Description

ACM Accessibility Content Manager

AD Audio Description

API Application Programming Interface

AST Audio Subtitles

CRON chrono table (time-based job scheduler)

DASH MPEG Dynamic Adaptive Streaming over HTTP

JSON JavaScript Object Notation

MPD
Media Presentation Description: the DASH

manifest/playlist

MD5 message-digest algorithm

OTT Over The Top

PHP Hypertext Preprocessor

REST API Representational State Transfer API

SFTP Secure File Transfer Protocol

SL Sign Language

ST Subtitles

XML Extensible Markup Language

https://en.wikipedia.org/wiki/Job_scheduler

8 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

1. INTRODUCTION

1.1 Purpose of this document

This deliverable focuses on software modules implemented in task 3.3 “Content packaging and
distribution”. First, it presents an overview of the current ImAc platform architecture and details
the workflow and each of its components. It also details the future evolutions of the platform
regarding final iteration needs of the project, specially linked to pilot 2. Then, this report explains
how those modules can be installed and managed (user manual section) and how to have access
to the code.

1.2 Scope of this document

The objective of task T3.3 is to provide a set of modules to achieve the packaging and the
distribution of media contents including innovative formats used into the ImAc project, in
particular immersive accessibility formats. This task is also actually linked with the task T3.2
“Accessibility Content Manager”, described in deliverable D3.2 and task T3.5 “Player” described
in D3.5 [2]. In this sense, the T3.3 objectives are to provide a full set of content processing
services which the ACM and the player can rely on. Moreover, this task also includes the
provisioning of servers on which the ACM and the Content Packaging & Distribution services are
installed.

Then, in this deliverable, we will describe:

- The ImAc server-side platform as an infrastructure.

- The ingest transcoding service that provides appropriate quality for production.

- The packaging and distribution service to provide multiple qualities for adaptive

delivery.

1.3 Status of this document

The previous version of the document focused on the software components and modules linked
to the first iteration of the project (pilot 1). This version report the progress made towards the
second iteration (pilot 2). Some aspects regarding the automated workflow are still ongoing, so
they and will be refined and completed at a later stage and reported in an updated version of
the delivrable.

1.4 Relation with other ImAc activities

The development of the ImAc packaging and the distribution set of modules, together with other
components of the Immersive Platform and the player, is included in WP3. It is driven by the
(home + professional) user requirements established in WP2, but refinements and extensions
will be included, based on the insights from the evaluations in WP5, for each one of the pilot
phases considered in ImAc. Improvements can also be integrated based on the results from the
integration tasks in WP3 and from feedback gathered in dissemination actions (WP6). This is
illustrated in Figure 1.

9 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Figure 1: Relationships between Work Packages (WPs), and their cycles (iterations).

In addition, the PERT diagram in Figure 2 illustrates with more details the relation between T3.3
and the other ImAc activities. In particular, the set of modules provided into T3.3 will be a bridge
between the Accessibility Content Manager (T3.2) and the player (T3.5). The packaging and
distribution modules have been developed in line with the Architecture Design tasks reflected
in D3.1.

Figure 2: PERT Diagram illustrating the relationship between T3.3 and other ImAc activities.

10 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

2. PLATFORM DESCRIPTION

The ImAc platform is a complete end-to-end chain with key parts: content preparation parts,
server-side part and a client-side part (player). This chapter focuses on the server-side part of
the platform and more precisely on the set of components to provide all services linked to the
ingestion, preparation, packaging and distribution of media contents. This platform is evolving
during the iteration phases of the project. The chapter 3 focuses on the current version of
packaging and distribution components implemented and tested within the framework of the
pilot 1. The chapter 4 presents the future evolutions of the packaging and distribution
components to fulfil needs of the next iteration of pilot actions.

 General architecture

The D3.1 document specifies a general architecture which is a second iteration of the
architecture updated for pilot 2 with the different components as it is shown in the figure below:

Figure 3: Deployment View Diagram - complete ImAc system

 Server-side platform implementation

The schema below presents the general implementation architecture of the server-side ImAc
platform:

11 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Figure 4: General platform architecture implementation

The ImAc server-side platform hosts 3 mains functional components:

● An ingest module, which allows content producers/owners to upload their contents
and then to transcode them with an appropriate quality for the ACM.

● The (ACM) components, which are described in D3.2.
● The “Content packaging and distribution” component.

All components on the right (in grey) correspond to modules that work with the ACM, which are
described into the deliverable D3.2. The other components (in orange) are described in this
document with three main parts: ingest, transcoding, and packaging and distribution.

 General workflow

In the ImAc workflow (described in D3.1), audio-visual contents coming from the
producer/owner are firstly ingested into the platform and transformed into an appropriate
format and/or encoded into an appropriate quality. Then, accessibility contents like subtitles
authored thanks to editing tools are then linked to the corresponding contents within the ACM.
The workflow can then be divided into the next steps:

1. Ingest: the audio-visual input contents are retrieved at a high quality level from the

mastering process of production: high resolution, high bandwidth, specific master

production codecs.

2. Transcoding: Since the editing tools need to work with low bandwidth content, the

audio-visual contents are transcoded before being sent to the ACM.

3. ACM: The accessibility content is then linked with audio-visual contents through

different tools of the ACM (like the web-based player connected to the ACM server).

4. Distribution: The audio-visual contents and the corresponding accessibility contents are

prepared for their distribution. Qualities from the original (4K or even higher) to lower

acceptable qualities (up to 720p, or lower for the SL video) are transcoded, packaged,

and made available, via broadcast

12 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

3. ARCHITECTURE AND COMPONENTS DESCRIPTION

(PHASE 1)

This chapter describes more in detail the architecture and the first implementation phase of the
different components. This first implementation has been used for the pilot 1, but it is also used
for pilot 2. However, the requirements coming with pilot 2 actions lead to improve either the
global architecture and also components linked to the packaging and distribution. Those
improvements are described in next chapter.

 Server-side platform implementation

The schema below presents the implementation architecture of the phase 1 of the server-side
ImAc platform in which a SFTP server have been chosen as the ingest:

Figure 5: Platform architecture implementation for phase 1

 Server-side platform workflow

To have a better understanding of the processes for contents creation and preparation, the
schema in Figure 5 indicates the different sequential steps, and thus the content workflow,
through the different modules of the platform. These steps are also listed below:

1. AV content is ingested through the SFTP, which is a secured FTP server.

2. AV content is transcoded for the ACM.

3. Accessibility Content is authored by using the editing tools linked to the ACM (ST, AD,
SL).

4. Accessibility & AV content is packaged

5. Packaged content is then converted into DASH format (i.e. encoded in multi-qualities,
segmented) and the appropriate metadata files are created (i.e., MPD, and updated list
of available contents) and published on the webserver for their consumption by using
the ImAc player. The ImAc player can also use the JSON written by the packager (Annex
5) to list and describe the available contents.

13 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Figure 6: Content workflow through the platform

 Content preparation sequence

In order to detail more the workflow and the underlying process, a sequence diagram is
presented below. This diagram summarizes the content transformation steps through the
different processes running onto the ImAc platform and the events sent between processes or
external actors. The associated Concepts and implementation details are explained in next
sections.

Figure 7: Sequence diagram of the content processing

14 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 Components description

In this section, we describe how the “Content packaging and distribution” components work and
how they interact with the rest of the ImAc platform.

3.4.1. Ingest

The ingest module allows to upload contents from production to the ACM.

3.4.1.1. Ingest steps and metadata description file

For the ingest phase, the provider will have to upload assets onto the input folder of the SFTP
server and then upload a metadata description file. For pilot 1 and 2, a metadata description has
been specified to be able to expose all necessary parameters to start the transcoding process.
This description file is based on XML (Extensible Markup Language), which is a markup language
that defines a set of rules for encoding documents in a format that is both human-readable and
machine-readable. Moreover, there are XML validators like XSD.

An example of metadata description file is given in Annex 1. This file exposes parameters like file

name, size, number of channels for audio, type of encoding, languages, and so on.

This module is based on CRON script (https://en.wikipedia.org/wiki/Cron). CRON is a time-based
job scheduler to schedule jobs (commands or shell scripts) to run periodically at fixed times,
dates, or intervals. CRON has been chosen because of its flexibility and easy update capabilities
during this first phase of construction of the all end-to-end process. In the next phase (see
chapter 4), CRON is likely to be replaced by an actual scheduler.

After this step, the CRON process task will do:

o Transcoding of new ingested audio-visual content to an audio & video format

appropriate for the ACM.

o The ACM will generate the required metadata document to ensure consistency;

this includes a human readable indexing of the content, which provides

information necessary to automatize later steps in the ACM (see D3.2 for details

on these steps).

o Generation of a JSON notification, which is sent to the ACM to start the task of

authoring.

NOTE: JSON (https://en.wikipedia.org/wiki/JSON) is an open-standard file format that uses
human-readable text to transmit data objects consisting of attribute–value pairs and array data
types (or any other serializable value). It is a very common data format used for asynchronous
browser–server communication, including as a replacement for XML in some AJAX-style
systems.

3.4.1.2. Transcoding module and CRON script

The transcoding module aims at processing a high quality video (ingest quality) into a lower
quality video in order to provide the ACM with an appropriate file to work with. When the
transcoding task is done, the module will call the ACM through a REST API with a JSON result
file.

To summarize, the main steps previously described to be executed within this CRON script are:

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/JSON

15 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

● List the XML files in the input folder of the SFTP (along with the media files).

● Parse and validate the XML files one by one.

● Check that the uploaded files are on the disk and have the correct size provided in the

XML.

o If the check fails, the corresponding files are moved into an "error directory".

o If the check is ok, the XML and the files it lists are moved to a "working"

directory, and then the XML is then processed.

● Start the transcoding process

o If the processing fails, an error message is output and files are moved to the

“error directory” mentioned above to allow replication of the issue.

o If the processing is ok, files are moved to the output directory.

● Call the ACM through the REST ACM API with a JSON result file (dashed line in Figure

7). An example of JSON file for this process is given in Annex 2.

NOTE: In Phase 1, low quality video with 2 audio channels has been agreed as the required
format for the ACM input.

The use of a CRON script file was guided by practical reasons: the project needed a way to
simulate some tools that broadcasters have at hand, but couldn’t share easily and quickly with
the developers. However, the current approach has drawbacks detailed in this section. The
current limitations while uploading contents are:

● If the CRON job is set to occur every X minutes and a file/set of files takes longer than

that time to process, the transcoding process may be sent several times, which will slow

the computer even more, leading to CPU-locking the server. Therefore, the CRON

frequency is quite low (every 20 minutes given that typical contents are less than 10

minutes).

● The SFTP upload is not atomic, so if the CRON job is being triggered while the XML file

is being written, an error will be sent (media files are already checked from the XML).

● If the XML file is, by mistake, sent before the media assets, the script will detect missing

files and send the files to the error folder.

● The XML file itself may be written by a human and then the edited file may be error

prone.

● The use of a CRON job makes debugging pretty hard to do without reprocessing the files

manually. Reprocessing manually is however the good practice to reproduce bugs out

of the server.

● The use of the file size instead of the MD5 checksum to verify data integrity

(https://en.wikipedia.org/wiki/MD5) won't check if the file is valid. It is a basic

verification, but not a very efficient one. This limitation was imposed by broadcasters

who need to edit the file manually and were not comfortable with checksums.

https://en.wikipedia.org/wiki/MD5

16 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

3.4.2. Low Quality transcoding

3.4.2.1. ImAc encoder

The ImAc Encoder (imac-encoder) takes the previously mentioned XML file as an input to define
the job processes and transcodes the audiovisual contents as needed. This process involves
some processing on the audio, which can be ingested as stereo, binaural or 3D spatialized, and
needs to be downmixed to a format understandable to the ACM preview component.

For phase 1, imac-encoder is handled as a shell script triggering the FFmpeg transcoding
application (https://www.ffmpeg.org/documentation.html). In particular, the FFmpeg
command-line for generating the low quality preview for the ACM is:

ffmpeg -i video.mp4 -i audio.wav -vf scale=-2:720 -c:v libx264 -bf 0

-crf 22 -c:a aac output.mp4

This command-line will transcode the original high quality video into a new lower quality content
compatible with the ACM, where:

 Video resolution is rescaled to 720p

 Video compression is H264

 Audio is stereo and coded in AAC

3.4.2.2. Notification to the ACM

When the transcoding process is completed, the ACM is notified and it receives a JSON file like
the following one:

{

 "pathXML": "/home/alex/projects/imac/497288-Life_On_Mars.xml",

 "pathVideoLow": "/home/alex/projects/imac/497288-Life_On_Mars-low.mp4",

 "pathVideoHigh": "/home/alex/projects/imac/497288-Life_On_Mars.mp4",

 "audiosHigh" :

 [

 {

 "path" : "/home/alex/projects/imac/497288-Life_On_Mars_1.wav"

 },

 {
 "path" : "/home/alex/projects/imac/497288-Life_On_Mars_2.wav"

 }

]

}

3.4.3. Packaging and distribution module

3.4.3.1. From ACM to the packaging

Once the ACM has received the audiovisual contents, professional users will use the different
interfaces to create, add or modify accessibility contents (namely: SL, AD, ST) described in
deliverables 4.1, 4.2 and 4.3. When the user finishes the preparation of these accessibility
contents, he/she will have to fill a form with parameters and options, as it is shown in the
snapshot below:

https://www.ffmpeg.org/documentation.html

17 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Figure 8: Contents accessibility form

During the pilot 1, there are still some manual operations to do:
 The ST format may have to be processed by doing a TTML pre-segmentation for

distribution (Such a process is described in this open recommendation:
https://www.gpac-licensing.com/2016/03/21/guidelines-on-how-to-embed-ttml-in-
mp4-and-dash/).

 The accessibility contents SL, AD, ST are then uploaded onto the SFTP.
 The audio will have to be processed manually, if needed.

After validation of the form, the packaging and distribution module will be triggered through a
webservice and then executed with a JSON file as parameter (an example of JSON file is given in
Annex 2). This JSON file describes all linked media associated to one content (audio, video, SL,
AD, ST) in order to provide to the packager all information to package and adapt the whole
content ready to be published.

3.4.3.2. Imac-packager

The packaging & distribution module allows to package audiovisual contents and all associated
accessibility contents into a distribution format (or stream-based format, like DASH) taking into
account the specificity of the different targeted platforms (PC, Android, iOS, HbbTV2.0). The
distribution format, like DASH, is extended accordingly regarding the signalisation of the
accessibility contents. The designed mechanisms to signalize the access services and their
features via the MPD are described in D3.4 and D3.5.

https://www.gpac-licensing.com/2016/03/21/guidelines-on-how-to-embed-ttml-in-mp4-and-dash/
https://www.gpac-licensing.com/2016/03/21/guidelines-on-how-to-embed-ttml-in-mp4-and-dash/

18 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

The ImAc Packager (imac-packager) is aimed to be a separate tool. For the process of agile
development, it is now made of a set of scripts that have been considered acceptable for Pilot 1
and 2.

The packaging and distribution module then executes several atomic operations, being the main
ones:

● Parse the JSON file coming from the ACM.

● Transcode the video from the ingest format to the publication format.

● Fragment the audio and the video final encodings (according to DASH format).

● Fragment also audio description and sign language video (according to DASH

format).

● Create some DASH assets (generates a MPD manifest).

● Modify the generated MPD and add TTML for the subtitles. See example in Annex

3.

● Modify the generated MPD manifest to add custom descriptors for audio (see

example in Annex 4). The steps for adding discontinuous SL videos are being defined

at the time of writing.

● Publish content on the HTTP server (either on the web server of the ImAc platform

for testing or onto a CDN server for massive distribution).

 Server setup

The ImAc server-side platform has been set up on servers provided and managed by Motion
Spell. For Pilot 1 and pilot 2, the installation tasks described below have been followed:

● Setting up a Virtual Machine through Google Cloud Platform equipped with 2 CPU cores

and 2 Tb of storage.

● Installation and configuration of an HTTP server (apache) and a SFTP file upload server.

● Creation of a script to be able to install and configure another server without any manual

operation.

● Creation of a running task (based on CRON script) allowing to process audio-visual

content input, generate JSON result files and call other components (ACM and

packager).

19 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

4. ARCHITECTURE AND COMPONENTS DESCRIPTION

(PHASE 2)

The platform architecture and set of components used for pilot 1 have some limitations that
need to be solved in the project next phases:

 The CRON process shows many limitations: Since a CRON is triggered every X
minutes, the processing latency can be up to that limit, delaying the input
processing. Also, when a new CRON starts, the previous one may not have finished.
If you want to have more leeway for the first CRON to finish, you may want to
increase the CRON period, however, that would lead to longer delays.

 The SFTP server to upload media content is not the best for web process and
specially to give the control to the ACM to lead the upload.

 Automation needs a better engine to apply rules and scripts.
 The processing time appears to be too long.
 Process many media contents (or provide a production platform to many users)

appears to be complex.
 The accessibility contents processing pipeline is not yet fully automatized and still

need to be improved for pilot 2.
 Some metadata file for the player need to be more flexible (like adding personalized

covers for each clip).

This chapter presents how the current architecture will be improved towards more scalability
and better input processing latency, which was an issue inherent to the CRON architecture of
the phase 1 version.

 Server-side platform implementation (phase 2)

The general server-side implementation of the new version is given below:

20 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

Figure 9: Platform implementation architecture for phase 2

On this new version, the following things change:

 The processing isn’t done on a single server anymore. Once a content needs to be
processed, the scheduler triggers a dedicated server running for that task only (detailed
in 4.1.2).

 The ingestion is done through Amazon S3 instead of SFTP (detailed in 4.1.1) .

4.1.1. Better upload management

Currently, we are uploading the contents using an SFTP server. However, this method has some
issues:

 We cannot automatically trigger an action after an upload, which forces us to use a
CRON job, which, in turn, introduces processing latency.

 We are limited by the storage of the computer we are uploading to.

 No redundancy: if a hardware failure occurs, the files are lost.

The next version will use Amazon S3 for the following reasons:

 We can trigger an action after an upload, and this action would activate the scheduler
for the uploaded content.

 Since Amazon can trigger actions, there would be no need to implement a dedicated
backend for that. We plan to use S3 tools, which are widely available.

 If we ever need to implement a backend ourselves, S3 is widely supported.

4.1.2. Better scalability

As explained previously, we are currently transcoding and packaging all out videos on a single
server, meaning that if multiple packaging are requested, or if multiple videos are being
uploaded at the same time, we could saturate the server and make it crash or slow down
dramatically. If that happens, the server’s ability to respond to requests, or continue its work,
could be severely hampered.

To solve that, a scalability API would be added, which would start a server dedicated to a single
process. Once an encoding or packaging task arrives, it can be processed quickly, on a dedicated
hardware, without risking slowdowns on other tasks.

4.1.3. Encoding Improvements

The encoding process will be improved to fix a few playback issues that have been encountered
by the web player (stutters and slow playback). The encoding has been town down to the H264
main profile.

This will help the browser keep a steady playback, since it has to decode two streams and
composite them into the final 360 scene.

21 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

4.1.4. Discontinuous Signer Language video and position

Currently, we are displaying the signer language video as a single continuous video. However,
we do not always need to display it, since parts of the video do not have a corresponding signer
language video associated to it.

Hence, the SL video needs to be chunked, and each chunk may need its own position in the
immersive video.

To solve that issue, the SL video will split using the metadata sent by the ACM (to be defined),
then each segment will need to be transcoded with a 2 second fixed GOP, and finally, each
segment will be “DASHed” into its own period to be inserted in the MPD.

As for the position, it will be an attribute of the corresponding period.

22 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

5. HOW TO

This section aims at providing practical information for two main purposes. First, it provides the
URLs and credentials to allow the professional users to access the SFTP server. Second, it
describes how to access, install and use the software.

 How to access the SFTP server

The SFTP server is a secured FTP server. Many applications (like Filezilla) can be used to get
connected to it thanks to those information:

 ImAc Server: imac.gpac-licensing.com
o User: imac

o Pwd: jyfRwHyqZIDy7B
 Direct command line:

sftp://imac:jyfRwHyqZIDy7B@imac.gpac-licensing.com

 How to access the Code

To have access to all code, the ImAc server can be accessed through ssh with the same user/pwd
than the SFTP access.
The code of the cron job can be also accessed from here:
https://github.com/RodolpheFouquet/ImaCron
Moreover, the code for the packaging rest API is accessible from here:
https://github.com/RodolpheFouquet/Imackager

 How to install the content packaging and distribution

module

This part explains the different steps to follow in order to install each sub-module needed for
the phase 1 of the ImAc platform. The different improvements for pilot 2 will be added in an
updated version of the deliverable provided at a later stage.

5.3.1. How to install the Cron script

● Download the script main.py from https://github.com/RodolpheFouquet/ImaCron

● Install pip for python3, on Debian or Ubuntu: sudo apt-get install python3-pip

● pip install colorama

● pip install xmlschema

● edit the crontan using crontab -e

● add */20 * * * * /home/imac/ImacCron/main.py -i

/home/imac/ftp/input -o /home/imac/ftp/output -w

/home/imac/ftp/working -e /home/imac/ftp/error >>

/home/imac/ftp/imacron_logs/`/bin/date +\%Y-\%m-

\%d.\%H:\%M:\%S`.log 2>&1 at the end of the file

● You can tweak the input/output/error/working directories if your assets are in a

different place

● You can change the imacron_logs directory if you want your logs to be written

somewhere else

● You can tweak the cron interval, check out this website for help https://crontab.guru/

● Do not forget to set the correct path to the main.py file if you have copied it to a different

mailto:jyfRwHyqZIDy7B@imac.gpac-licensing.com
mailto:jyfRwHyqZIDy7B@imac.gpac-licensing.com
mailto:jyfRwHyqZIDy7B@imac.gpac-licensing.com
https://github.com/RodolpheFouquet/ImaCron
https://github.com/RodolpheFouquet/Imackager
https://github.com/RodolpheFouquet/ImaCron
https://crontab.guru/

23 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

place

5.3.2. How to install the packager

● Download imackager.py from here

https://github.com/RodolpheFouquet/Imackager/blob/master/imackager.py

● Install flash by typing “sudo pip3 install Flask”

● Run the server by typing FLASK_APP=imackager.py python3 -m flask run

● The server will be available on the port 5000

● If you desire to run it as a service, you can run it as a systemd service by isolating

FLASK_APP as an environment variable

If you setup a systemd service, your configuration file should look like this:

[Unit]

Description=Imackager

After=network.target

[Service]

User=www-data

Environment=”FLASK_APP=/path/to/imackager.py”

ExecStart=/usr/bin/python3 -m flask

[Install]

WantedBy=buildbot-master.service

https://github.com/RodolpheFouquet/Imackager/blob/master/imackager.py

24 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

6. USER MANUAL

The different components linked to the Task 3.3 “Packaging and Distribution” are supposed be
automatically executed from the ACM (or triggered from SFTP repository); manual steps are
guided from the ACM as this evolves quickly.

This document constitutes the base of the user manual as well as for the installation of the
different modules than for their usage.

25 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

ANNEX 1: PRODUCTION XML METADATA (AND XSD FOR

VALIDATION)

2 Examples of XML contents description file that will be processed by the transcoding module:

<?xml version="1.0" encoding="UTF-8"?>

<content acm_virtual_folder="documentary" lang="en_GB" programmeID="497288"

title="opera">

 <inputs>

 <video>

 <file>programmeID_name.mp4</file>

 <size>36522200</size>

 <!-- Size of file in Bytes (Mandatory) -->

 </video>

 <audio>

 <file>programmeID_name.mp4</file>

 <!-- Audio is muxed in mp4 file, is the-->

 <channels>4</channels>

 <!-- Number of channels (supported: 2 for stereo, 4 for ambisonic,

object based needs further discussion) (Mandatory)-->

 <format>ambisonic</format>

 <!-- ambisonic or stereo. Could link to an external file when not

muxed with video (Mandatory)-->

 <lang>ca</lang>

 <!-- Audio language (Mandatory)-->

 </audio>

 <audio>

 <lang>ca</lang>

 <!-- Audio language (Mandatory)-->

 <file>programmeID_ name_stereo.wav</file>

 <!-- Example when audio is not muxed, or there is an additional

audio track. Is the _stereo in the name necessary? -->

 <format>stereo</format>

 <!-- Audio format (Mandatory)-->

 <channels>2</channels>

 <!-- num of channels (Mandatory)-->

 <size>787443</size>

 <!-- Size is optional. Must be provided when audio is in separate

file -->

 </audio>

 </inputs>

 <output>

 <!-- Do we need this? -->

 <targetFolder>./outputs/opera</targetFolder>

 </output>

</content>

The XSD allows validation of a XML specific document.

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="file" type="xs:string"/>

 <xs:element name="size" type="xs:int"/>

 <xs:element name="channels" type="xs:byte"/>

 <xs:element name="format" type="xs:string"/>

 <xs:element name="lang" type="xs:string"/>

 <xs:element name="video">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="file"/>

 <xs:element ref="size"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="audio">

 <xs:complexType>

https://en.wikipedia.org/wiki/XML_Schema_(W3C)

26 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 <xs:choice maxOccurs="unbounded" minOccurs="0">

 <xs:element ref="file">

 <xs:annotation>

 <xs:documentation>Audio language (Mandatory)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element ref="channels">

 <xs:annotation>

 <xs:documentation>Audio is muxed in mp4 file, is the Audio format

(Mandatory)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element ref="format">

 <xs:annotation>

 <xs:documentation>Number of channels (supported: 2 for stereo, 4

for ambisonic, object based needs further discussion) (Mandatory) Example when

audio is not muxed, or there is an additional audio track. Is the _stereo in

the name necessary?</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element ref="lang">

 <xs:annotation>

 <xs:documentation>ambisonic or stereo. Could link to an external

file when not muxed with video (Mandatory)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element ref="size">

 <xs:annotation>

 <xs:documentation>num of channels (Mandatory)</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="targetFolder" type="xs:string"/>

 <xs:element name="inputs">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="video">

 <xs:annotation>

 <xs:documentation>Size of file in Bytes

(Mandatory)</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element ref="audio" maxOccurs="unbounded" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Audio language (Mandatory) Size is optional.

Must be provided when audio is in separate file</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="output">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="targetFolder">

 <xs:annotation>

 <xs:documentation>Do we need this?</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="content">

 <xs:complexType>

 <xs:sequence>

27 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 <xs:element ref="inputs"/>

 <xs:element ref="output"/>

 </xs:sequence>

 <xs:attribute type="xs:string" name="acm_virtual_folder"/>

 <xs:attribute type="xs:string" name="lang"/>

 <xs:attribute type="xs:int" name="programmeID"/>

 <xs:attribute type="xs:string" name="title"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

28 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

ANNEX 2: ACM NOTIFICATION TO THE PACKAGER

Example of JSON coming out of the ACM to be sent to the packaging and distribution module.

{

 "assetId": 302,

 "programName": "Life On Mars",

 "furtherProgramInformationNeeded?": "MSE please add",

 "files": {

 "mainVideo": {

 "url": "/home/alex/projects/imac/497288-Life_On_Mars.mp4",

 "urn:mpeg:dash:role:2011": "main",

 "furtherVideoInformationNeeded?": "MSE please add"

 },

 "signer":{

 "tbd": "???"

 },

 "audio":[

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-binaural-

main.aac",

 "language": "ca_ES",

 "description": "Binaural Main Mix ca",

 "audioFormat": "binaural",

 "ADposition": "",

 "ADgain": "",

 "containsAD": "0",

 "urn:mpeg:dash:role:2011": "main"

 },

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-FOA-

main.aac",

 "language": "ca_ES",

 "description": "FOA Main Mix ca",

 "audioFormat": "FOA",

 "ADposition": "",

 "ADgain": "",

 "containsAD": "0",

 "urn:mpeg:dash:role:2011": "main"

 },

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-AD-

VOG-medium.aac",

 "language": "ca_ES",

 "description": "Binaural AD VOG medium ca",

 "audioFormat": "binaural",

 "ADposition": "VOG",

 "ADgain": "medium",

 "containsAD": "1",

 "urn:mpeg:dash:role:2011": "alternate"

 },

 {

 "etc.": "etc."

 },

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-binaural-

main-en.aac",

 "language": "en_UK",

 "description": "Binaural Main Mix en",

 "audioFormat": "binaural",

 "ADposition": "",

 "ADgain": "",

 "containsAD": "0",

 "urn:mpeg:dash:role:2011": "main"

 },

],

29 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 "subtitle":[

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-sub-

ca.ttml",

 "language": "ca_ES",

 "urn:mpeg:dash:role:2011": "caption"

 },

 {

 "url": "/home/alex/projects/imac/output/497288-Life_On_Mars-sub-

en.ttml",

 "language": "en_UK",

 "urn:mpeg:dash:role:2011": "caption"

 }

]

 }

}

30 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

ANNEX 3: MPD TTML CUSTOMIZATION

<?xml version="1.0" encoding="utf-8"?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"

profiles="urn:mpeg:dash:profile:isoff-live:2011,urn:com:dashif:dash264"

maxSegmentDuration="PT2S" minBufferTime="PT2S" type="static"

mediaPresentationDuration="PT1M">
 <ProgramInformation>
 <Title>Media Presentation Description by MobiTV. Powered by MDL

Team@Sweden.</Title>
 </ProgramInformation>
 <Period id="precambrian" start="PT0S">
 <AdaptationSet contentType="audio" mimeType="audio/mp4" lang="eng"

segmentAlignment="true" startWithSAP="1">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="main"/>
 <SegmentTemplate startNumber="1"

initialization="$RepresentationID$/init.mp4" duration="2"

media="$RepresentationID$/$Number$.m4s"/>
 <Representation id="A48" codecs="mp4a.40.2" bandwidth="48000"

audioSamplingRate="48000">
 <AudioChannelConfiguration

schemeIdUri="urn:mpeg:dash:23003:3:audio_channel_configuration:2011"

value="2"/>
 </Representation>
 </AdaptationSet>
 <AdaptationSet contentType="video" mimeType="video/mp4"

segmentAlignment="true" startWithSAP="1" par="16:9" minWidth="640"

maxWidth="640" minHeight="360" maxHeight="360" maxFrameRate="60/2">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="main"/>
 <SegmentTemplate startNumber="1"

initialization="$RepresentationID$/init.mp4" duration="2"

media="$RepresentationID$/$Number$.m4s"/>
 <Representation id="V300" codecs="avc1.64001e" bandwidth="300000"

width="640" height="360" frameRate="30" sar="1:1"/>
 </AdaptationSet>
 <AdaptationSet contentType="text" mimeType="application/ttml+xml"

segmentAlignment="true" lang="eng">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle"/>
 <Representation id="xml_eng" bandwidth="1000">
 <BaseURL>sub_eng_short.xml</BaseURL>
 </Representation>
 </AdaptationSet>
 <AdaptationSet contentType="text" mimeType="application/ttml+xml"

segmentAlignment="true" lang="swe">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle"/>
 <Representation id="xml_swe" bandwidth="1000">
 <BaseURL>sub_swe_short.xml</BaseURL>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

31 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

ANNEX 4: MPD AUDIO CUSTOM DESCRIPTORS

<AdaptationSet contentType="audio" lang="en" …>

 ...

 <Representation audioSamplingRate="48000" bandwidth="260979" id="r1"

imac:ad-mode="VoiceOfGod" imac:ad-gain="2">

 <BaseURL>programName_AD_VoG_G2_binaural_seg.aac</BaseURL>

 <SegmentBase indexRange="0-2000"/>

 </Representation>

 <Representation audioSamplingRate="48000" bandwidth="260979" id="r2"

imac:ad-mode="Friend" imac:ad-gain="1">

 <BaseURL>programName_AD_Friens_G1_binaural_seg.aac</BaseURL>

 <SegmentBase indexRange="0-2000"/>

 </Representation>

 ...

</AdaptationSet>

ANNEX 5: JSON DATABASE USED BY THE PLAYER

{

 "title": "ImAc",

 "contents": [

 {

 "name": "Liceu Opera Piece 1",

 "poster": "./img/opera1_cover.png",

 "thumbnail": "img/opera1.png",

 "description": "Performance of the “Roméo et Juliette” opera

recorded at the Gran Teatre del Liceu Opera House (Barcelona). Piece

1.",

 "descriptionArray": [

 {

 "de": "Aufführung der Oper “Roméo et Juliette”, aufgenommen im

Gran Teatre del Liceu Opera House (Barcelona). Teil 1.",

 "ca": "Representació de l'òpera “Romeo i Julieta” gravada al Gran

Teatre del Liceu (Barcelona). Peça 1.",

 "es": "Representación de la ópera “Romeo y Julieta” grabada en el

Gran Teatro del Liceu (Barcelona). Pieza 1.",

 "en": "Performance of the “Roméo et Juliette” opera recorded at

the Gran Teatre del Liceu Opera House (Barcelona). Piece 1."

 }],

32 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 "acces": [

 {

 "ST": ["en", "es", "de", "ca"],

 "SL": ["en", "es", "de", "ca"],

 "AD": ["en", "es", "de", "ca"],

 "AST": ["en", "es", "de", "ca"]

 }],

 "language": "French",

 "duration": "8:28",

 "url":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_01/stream.mpd",

 "audioChannels": 4,

 "subtitles": [{}]

 },

 {

 "name": "Liceu Opera Piece 2",

 "poster": "./img/covers/opera2_cover.png",

 "thumbnail": "img/opera2.PNG",

 "description": "Performance of the “Roméo et Juliette” opera

recorded at the Gran Teatre del Liceu Opera House (Barcelona). Piece

2.",

 "descriptionArray": [

 {

 "de": "Aufführung der Oper “Roméo et Juliette”, aufgenommen im

Gran Teatre del Liceu Opera House (Barcelona). Teil 2.",

 "ca": "Representació de l'òpera “Romeo i Julieta” gravada al Gran

Teatre del Liceu (Barcelona). Peça 2.",

 "es": "Representación de la ópera “Romeo y Julieta” grabada en el

Gran Teatro del Liceu (Barcelona). Pieza 2.",

 "en": "Performance of the “Roméo et Juliette” opera recorded at

the Gran Teatre del Liceu Opera House (Barcelona). Piece 2."

 }],

 "acces": [

 {

 "ST": ["de", "ca"]

 }],

 "language": "French",

 "duration": "8:15",

 "url":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_02/stream.mpd",

 "audioChannels": 4,

 "subtitles": [

33 D3.3 – Content Packaging and Distribution Version 1.8, 01/08/2019

 {

 "de":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_02/CCMA_OPERALICEU02_sub

titles_DE.xml",

 "ca":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_02/CCMA_OPERALICEU02_sub

titles_CAT.xml"

 },

 {

 "de":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_02/CCMA_OPERALICEU02_sub

titles_DE.xml",

 "ca":"https://imac.gpac-

licensing.com/imac_content/pilot_1/OPERALICEU_02/CCMA_OPERALICEU02_sub

titles_CAT.xml"

 }],

 "signer": [{}]

 }]

}

REFERENCES

[1]

[2]

[3]

[4]

[5]

D3.2 : Accessibility Content Manager: see the ImAc project web site at the Work
Package 3 section : http://www.imac-project.eu/documentation/deliverables/

D3.5 : Player

D4.1: Subtitle Production Tools : see the ImAc project web site at the Work Package
4 section: http://www.imac-project.eu/documentation/deliverables/

D4.2: Audio Production Tools

D4.3: Sign Language Editor

<END OF DOCUMENT>

http://www.imac-project.eu/documentation/deliverables/
http://www.imac-project.eu/documentation/deliverables/

